Air pollution issues from the perspective of the Federal Environment Ministry of Germany

2020 EUFJE Annual Conference 9th/10th October 2020

Thomas Weber

Federal Ministry for the Environment, Nature Conservation and Nuclear Safety (Germany)

Presentation is my personal view

Emissions vs Immission

Emissions

National: <u>NECD</u> Source-based: IED, MCPD, Euro standards etc.

Transmission Chemical reactions

Responsibilities of national, regional and local authorities in Germany

Level	Type of authority	Responsibilities		
Federal	Federal Ministry for Environment,	 policy-making and implementation 		
government	Nature Conservation and Nuclear	(political framework, legislation)		
	Safety			
	Federal Environment Agency	 reporting to European Commission 		
		 calculating emissions (except agricult.) 		
	Thünen institute	 calculating agricultural emissions 		
State level	chief emission control authorities,	 involvement in federal legislation 		
	higher/intermediate/lower state	 state-based policy-making/legislation 		
	authorities	 – enforcement (air quality monitoring and 		
		air pollution control planning)		
Towns and		enforcement		
municipalities				

NEC Directive and NAPCP

New NEC Directive

- National implementation in the 43rd BImSchV (in force since 31st July 2018)
- NEC covers sum of national emissions of pollutants
- Reduction obligations relative to base year 2005
- Federal Government adopts a National Air Pollution Control Programme (at least) every four years
- NAPCP adopted on 22 May 2019

Reduction obligations for Germany

	SO ₂	NO _x	ΝΜΥΟΟ	NH ₃	PM _{2,5}
2020-2029	- 21 %	- 39 %	- 13 %	- 5 %	- 26 %
2030	- 58 %	- 65 %	- 28 %	- 29 %	- 43 %

Primary PM_{2.5} emissions since 1995 (in kt)

Source: NAPCP DE

Main content of NAPCP

- Development of national emissions in the past (2005-2016)
- Emission projections for 2020-2030 in two scenarios
 - With measures (WM scenario)
 - With additional measures (WAM scenario)
- list of additional measures needed for compliance with reduction obligations
- Assessment of **impact on background air quality** (modeling)

Calculation of national emissions

- Calculation explained in detail in guidance documents
- Principle:

Emission $[EM] = Activity Rate [AR] \cdot Emissions factor [EF]$

- Examples for activity rates:
 - fuel consumption in terajoules [TJ]
 - number of animals given in units [U]
 - quantity of product used in kilograms [kg]
- Emission factors:
 - measurement results
 - other sources as e.g. modelling, expert calculation/estimation on the basis of qualified assumptions

WAM scenario for compliance with NECD

NECD reduction		2030							
commitments (from 2005 baseline)			NOx	SO ₂	NMVOC	NH₃	PM2.5		
			65%	58%	28%	29 %	43 %		
WM scenario		%	59%	51%	30%	9 %	41%		
		kt	603	231	785	570	80		
Reduction poter	Reduction potentials of c								
Climate	a)	kt	-24.6	-26.6	-2.0		-1.6		
change mitigation	b)	kt	-32.3	-34.8	-0.9	-0.5	-1.5		
	Combus								
	c)	kt	-31.2	-0.2			-0.1		
	d)	kt					-1.3		
	Transpc								
Air pollution	e)	kt	-7.2		-5.5	-0.2	-0.3		
control	Agricult								
	f)	kt				-133.0			
	Со	mbu	5						
	g)	kt		-8.2					
	h)	kt	-2.1						
		%	65%	66%	31%	30%	44%		
WAIVI scenario		kt	506	161	776	436	75		

- a) climate change mitigation measures
- b) phase-out of electricity generation from coal and lignite
- c) implementation of the **MCP Directive**
- d) retention of more ambitious **national rules** on **solid fuel boilers**
- e) road transport measures (e.g. software update for cars; hardware retrofitting for buses; new CO₂ limits for cars)
- f) package of **agricultural measures**
- g) promotion of a fuel-shift used in industrial production in favour of lower-sulphur fuels or more efficient technology for exhaust gas cleaning
- h) NO_x reduction for fuels except coal

Reductions and source categories

	NO _x (as NO ₂)				
Source groups (aggregated)	2005	Projection			
Source groups (aggregated)	2005	2020	2025	2030	
	kt	kt	kt	kt	
1 Energy	1 353.0	739.8	564.5	418.8	
A. Fuel combustion activities	1 351.9	738.7	563.4	417.7	
1 Energy industries	289.1	232.7	206.2	144.2	
2 Manufacturing industries	103.3	68.2	58.6	53.1	
3 Transport		333.8	212.8	149.5	
of which: road transport		284.1	167.9	110.3	
4 Other combustion plants		99.6	82.0	67.4	
of which: commerce, trade, services	34.6	27.1	23.1	19.8	
of which: residential	67.2	49.7	44.2	40.5	
5 Military and other minor sources	11.0	4.5	3.9	3.5	
B. Fugitive emissions from fuels		1.1	1.1	1.1	
2 Industrial processes	106.3	87.5	86.4	84.0	
3 Agriculture	118.0	128.1	128.3	128.3	
5 Waste and wastewater treatment	0.3	0.6	0.6	0.6	
National total of source groups for which reporting is obligatory	1577	956	780	632	
Total source groups for which reduction is obligatory	1459	830	653	506	

	PM2.5				
Source groups (aggregated)		Projection			
		2020	2025	2030	
	kt	kt	kt	kt	
1 Energy	93.2	53.3	45.1	40.2	
A. Fuel combustion activities	92.1	52.3	44.2	39.2	
1 Energy industries	10.7	6.7	5.9	4.1	
2 Manufacturing industries		2.2	1.4	1.1	
3 Transport	46.2	21.7	20.2	19.5	
of which: road transport	36.2	16.0	14.6	14.1	
4 Other combustion plants	30.2	21.6	16.5	14.4	
of which: commerce, trade, services	2.2	1.0	0.6	0.4	
of which: residential		18.6	14.7	13.1	
5 Military and other minor sources		0.1	0.1	0.1	
B. Fugitive emissions from fuels		1.0	1.0	1.0	
2 Industrial processes	31.7	25.3	25.2	25.0	
3 Agriculture	4.5	4.6	4.6	4.5	
5 Waste and wastewater treatment	5.6	5.7	5.7	5.7	
National total of source groups for which reporting and reduction are obligatory	135	89	81	75	

Phase-out of coal-based electricity production

- electricity generation from coal to end at the latest by 2038
- reviews in 2026, 2029 and 2032 planned
- major contribution to NO_x,
 SO₂ and PM_{2.5} reduction

Energy scenario for phaseout (in TWh):

	2016	2025	2030
Nuclear energy	80	0	0
Lignite	138	82	58
Hard coal	103	64	39
Gas / oil / other	100	123	130
Hydropower	51	42	43
Wind onshore	68	128	163
Wind offshore	12	42	68
Photovoltaics	39	62	77
Bioenergy	43	44	34
Other renewables	8	8	8

Biomass – air quality vs. climate change

- incentives for bioenergy as GHG reduction measure
- Trade-off with air pollution: PM_{2.5} emissions of biomass combustion about 500-800 higher compared to CNG boilers
- COM approved that Germany can maintain its more ambitious national standards for solid fuel boilers (needed for compliance with NECD)
- continuous monitoring necessary → large increase in number of solid fuel boilers could be a compliance risk for NECD
- Council conclusions Improvement of Air Quality:

"EMPHASISES that it is essential that **new** energy efficiency and **emission requirements** under the Ecodesign Directive, including for heaters and boilers, and [...] **contribute to continued coherence** and synergies, while **avoiding trade-offs**, **such as in the case of biomass use for both residential heating and medium-sized combustion installations**" (para 17, 5 March 2020)

PM_{2.5} emissions of transport

- Significant reduction of PM_{2.5} exhaust emissions over the last decade
- Relative share of abrasive emissions (brakes, tires, street) increasing → technical challenges

PM2,5-Emissionen des Verkehrs 2005-2016 in (in kt)

Ammonia emissions

- decrease in emissions of all pollutants covered by NECD except Ammonia (NH₃)
- NH₃ important precursor for PM concentration (also in cities)
- 95 % of NH₃ emissions from agriculture (2016), e.g. from spreading of organic fertilisers, mineral fertilisers and fermentation residues
- agricultural measures include
 - low-emission storage of manure
 - low-emission application of manure and mineral fertilisers

Issues related to the AAQ Directives

AAQ Directives

- Significant improvements of air quality have been achieved
- Air pollution is still a major health risk (also in Europe)
 - Pollutant concentrations affect i.a. burden of disease from stroke, heart disease, lung cancer, and both chronic and acute respiratory diseases.
- Current situation in Germany
 - compliance with PM limit values since 2018
 - exceedances of NO₂ annual mean limit value (40 $\mu g/m^3)$
 - limit value exceeded in 25 cities in 2019 (65 cities in 2017, 57 cities in 2018)
 - Main cause: high NO_x emissions of diesel passenger vehicles

Average $PM_{2,5}$ concentration ($\mu g/m^3$) at selected stations

NO₂ concentrations in cities

- Vehicle fleet
 - Share of diesel passenger cars in hot spot NO₂ direct emissions at ca. 72 % (UBA)
 - Share of diesel cars in Germany at 33 % (Eurostat, 2016)
- Real driving emissions of diesel passenger cars:

Emission standard	Date (first registration)	Limit value (mg NO _x /km)	Real world emissions (mg NO _x /km)	Deviation (factor)
Euro 4	Jan 2006	250	989	3,96
Euro 5	Jan 2011	180	950	5,27
Euro 6a-c	Sep 2015	80	614	7,68
Euro 6d- TEMP	Sep 2019	168	46	

Source: HBEFA 4.1

NO₂ reduction measures

- Numbers indicate that RDE requirements are a very effective and proportionate measure
 - EU-wide harmonization due to the common vehicle market
 - fleet renewal on-going (lower share of new Euro 6a-c high-emitting diesel cars since Oct 2018)
- necessary reduction can only be achieved in a joint effort

"[...] it is particularly important to combat emissions of pollutants <u>at source</u> and to identify and implement the most effective emission reduction measures <u>at local</u>, <u>national and Community level</u>." (Recital 2, AAQD)

 further NO₂ reductions expected due to measures adopted on all levels

EU level

• Real driving emissions (binding since 9/2019) → fleet renewal

Federal level

- Software updates of diesel passenger cars
- Promotion of hardware retrofitting (LDVs, vehicles of regional authorities)
- Model city program
- Private sector: Hardware retrofitting of diesel passenger vehicles (in / around cities >50 μg/m³; financed by two car manufacturers)

Regional level (measures differ between cities)

- Promotion of alternative modes of transport
- Dedicated lanes limited to specific modes of transport
- Traffic lights limiting number of vehicles allowed to enter ("gatekeeper traffic light")
- Driving bans in cities

Green deal / WHO guidelines

- Green Deal Communication (Dec 2019):
 - COM intends to revise AAQ Directives
 - Aim: align it more closely to WHO guidelines
 - "strengthen provisions on monitoring, modelling and air quality plans to help local authorities achieve cleaner air."
- Update of WHO (outdoor) air quality guidelines on-going

Current WHO AQ guidelines and EU AQ standards

Pollutant	WHO	EU air quality	'Permitted'	
	Guidelines	standards	exceedances	
PM ₁₀	20 μg/m³	40 μg/m³	-	
(annual LV)				
PM ₁₀	50 μg/m³	50 μg/m³	(35 days a year)	
(daily LV)				
PM _{2.5}	10 μg/m³	25 μg/m³	-	
(annual LV)				
PM _{2.5}	25 μg/m³	-	-	
(daily LV)				
NO ₂	40 μg/m³	40 μg/m³	-	
(annual LV)				
NO ₂	200 μg/m³	200 μg/m³	(18 hours a year)	
(hourly LV)				
SO ₂	20 μg/m³	125 μg/m³	(3 days a year)	
(daily LV)				
SO ₂	500 μg/m³	350 μg/m ³	(24 hours a year)	
(hourly LV)	(for 10 min)			
O ₃	100 μg/m³	120 μg/m ³	(75 days in	
(8-hour TV)			3 years)	

Source: COM, Fitness Check

Governance – current Directive

- Current AAQD: MS/ regions responsible for compliance
- <u>But:</u> future reduction options of MS / regions more limited
 - pollutant concentrations not only affected by local emissions, but also by long range transport of pollutants
 - → Large share of relevant emission sources outside jurisdiction of responsible entity (extent varies depending on many factors such as type of pollutant, size of MS ...)
 - emission source legislation mostly adopted on EU level
- considerations for future structure should include those aspects

Source: UBA (modified according to Lenschow et al.: Some ideas about the source of PM10, Atmospheric Environment 35(2001) pp 23-33)

Governance – examples for long range transport

- Relevant e.g. in terms of ground-level ozone:
 - ozone is not emitted, but a product of complex chemical reaction of ozone precursors like methane, CO, NO_x, NMVOCs (→ secondary pollutant)
 - exceedances for ozone vary significantly, as concentrations are sensitive to meteorological conditions, in particular sunlight
 - Long lifetime of ozone (up to several weeks); can be transported over very long distances

• Partculate matter:

- fine particles (< 1μm) can be transported hundreds/thousdands of kilometers (coarse particles are more easily deposited)
- substantial share of fine particle concentration due to NH₃ emissions

Governance – Joint responsibility

- Emissions for relevant sources identified can be reduced by reduction of EF or reduction of AR
- EF mainly determined by emission source legislation (mostly EU level)
- Regional measures often come down to **reducing AR** (due to **lack of legislative power** on EF), e.g.
 - driving bans
 - ban of solid biomass combustion in private households
 - reduction of number of animals
- reduction of EF typially more proportionate and cost-effective compared to reduction of AR

→ joint responsiblity and action is needed on all levels

• Council Conclusions (5th March 2020):

"15. STRESSES that air quality objectives should be fully reflected in EU emission source legislation [...]; in that context UNDERLINES the joint responsibility of the EU and Member <u>States</u> to maintain and improve air quality; INVITES the Commission to ensure that any proposals for EU emission source legislation sufficiently contribute to reaching air quality standards;" Emissions [EM] = Activity Rate [AR] * Emissions factor [EF]

EU source legislation:

- Passenger cars
- light and heavy duty vehicles
- Non-road mobile machinery (NRMM)
- Ecodesign
- MCPD (medium combustion plants)
- IED (large combustion plants)

Conclusions

- significant improvements have been achieved
- air pollution is still a major health risk, therefore **further reductions** are **necessary** in the future
- shift of focus in terms of source categories (mainly due to succesful emission reductions achieved)
- need for joint action on all levels should be considered in the governance structure of future AAQ legislation

Thank you!